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Abstract. The spread of a virus and the containment of such spread
have been widely studied in the literature. These two problems can be
abstracted as a two-players stochastic game in which one side tries to
spread the infection to the entire system, while the other side aims to
contain the infection to a finite area. Three parameters play a particu-
larly important role: (1) the probability p of successful infection, (2) the
topology of the network, and (3) the probability α that a strategy mes-
sage has priority over the infection.
This paper studies the effect of killing strategies, where a node sacrifices
itself and possibly some of its neighbors, to contain the spread of a virus
in an infinite grid. Our contribution is threefold: (1) We prove that the
simplest killing strategy is equivalent to the problem of site percolation;
(2) when killing messages have priority, we prove that there always exists
a killing strategy that contains a virus, for any probability 0 ≤ p < 1;
in contrast, (3) when killing message do not have priority, there is not
always a successful killing strategy, and we study the virus propagation
for various 0 ≤ α < 1.
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1 Introduction

Consider the propagation of a virus in a large distributed system, such as the
Internet, a sensor network, or a social network. An epidemic starts with an arbi-
trary node being initially infected, and then continues with each newly infected
node attempting to infect its neighbors. If nothing is done, all connected nodes
are eventually infected, and the time it takes only depends on the infection rate



(i.e., the probability of success for each infection attempt), the topology of the
network, and the location of the initial node.

Consider now that, upon an unsuccessful infection attempt, the targeted node
has a chance to detect the attempt and react to it. One simple strategy consists
in ordering that node to inform its neighbors of the presence of the virus and then
to kill itself. The informed node can have the same behavior so that the infection
can no longer spread through them. The hope is that, given enough nodes are
killed, they could actually isolate the infected nodes from the sane ones, thus
containing the spread of the virus. The chance of this happening depend mainly
on the following factors: (1) the infection rate p, (2) the detection probability,
(3) the probability α that killing messages have priority over the infection, and
(4) the topology of the network. In this paper we suppose that a node always
detect the virus when the infection fails (the detection probability equals 1− p).

Such systems are notoriously known to exhibit a critical threshold, that is,
the spread is almost surely contained if the infection rate is below the threshold,
but is very unlikely otherwise. This is reminiscent of another problem, known as
percolation [2], where the same phase transition occurs.

In this paper, we look at the following question: is there always a strategy to
contains the spread of a virus? We answer this question when the topology of
the network is a grid and for 0 ≤ α ≤ 1.

In our recent work [19], we have studied this question and the impact of sev-
eral containment strategies in various topologies, by relying on extensive simu-
lations. We found that containment strategies do have an impact on the critical
threshold of the system, and so does the topology. In this paper we formalize
and prove some of those observations.

Our Contributions The contribution of this paper is threefold. First, we show an
equivalence between infection rate threshold with the simplest killing strategy
and percolation threshold for the same topology. Second, we prove that, in the
infinite grid and when killing message have priority, there is always a killing
strategy such that the spread is contained with probability one, for any infection
rate 0 ≤ p < 1. Third, we prove that, in the infinite grid and when killing message
do not have priority, we give a lower bound on the threshold of the infection
probability, above which the virus spreads infinitely with a positive probability

The rest of the paper is structured as follows. Section 2 gives a brief overview
of the state-of-the-art on epidemic research. Section 3 defines the model, the
topology, and the killing strategies considered in the paper. Section 4 proves
the equivalence between the simplest killing strategy and percolation. Finally,
Section 5 proves that containment is always possible in an infinite grid, and
Section 6 shows a lower bound on the threshold of the infection probability.

2 Related Work

On the spread of a virus Starting from the epidemiology in human commu-
nity, much research has been conducted on propagation. The first mathematical
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models appeared in the 18th century, but modern models were essentially devel-
oped in the middle of the 20th century (e.g., [1, 12, 17]). While original models
did not consider geographic distributions, more recent epidemic models consider
geographic topologies, such as an infinite grid [6]).

Kephart and White [10] propose a birth-death model to study the spread of
computer viruses in homogeneous sparse graphs and conclude that a pandemic
occurs only when the infection rate exceeds a finite threshold that depends on
the connectivity of the network (phase transition). They also extend their model
to allow doing a virus scan [11].

Later, many works improve the results on the birth-death model and compute
new epidemic thresholds. Pastor-Satorras and Vespignani [20, 21] look at the
dynamics of epidemics in power-law scale free networks for which they find the
critical threshold. Chakrabarti et al. [4] study an epidemic model with recovery
and find that the propagation threshold is related to the eigenvalues of the
adjacency matrix of the network. Lately, Van Mieghem et al. [24, 25] use mean
field approximation to transform from individual random infection rates into an
average infection rate. Their model is called N -intertwined Markov chain.

In another direction, after the propagation of Code Red in 2001, many re-
searches look for the most accurate model to reflect the spread of different kinds
of viruses in the Internet. They propose different models from the scanning
worms [23,27,30] to the event-based worms [28,31], where the question is to pre-
dict, as accurately as possible, the evolution of the expected number of infected
entities in the network after the virus starts propagating.

On defense against a virus propagation In virus defense area, there are
many works studying how to contain or quarantine the virus or worms in different
network environments [18, 29, 31]. The containment strategies can be classified
into two main classes; proactive or reactive. In the first one, some nodes are
initially immune to the virus and only other nodes can be infected. In the latter,
all nodes are initially susceptible, but eventually any node may become immune
if it detects the virus (or receive some informations from other nodes).

Several work [29, 31] consider the spread viruses against proactive contain-
ment strategy, where the goal is to study the impact of the choice of the set of
immune nodes on the spread of the virus.

Moore et al. [18] proposed a model for scanning worms in complete graph
topology and give a comparison between two reactive strategies; (1) blacklisting,
upon detection of an infection, a node adds the attacker into a blacklist; and
(2) filtering-content, upon detection of a virus, a node transmits its signature
to all other nodes. They assume that when a node detects an infection, the
information (blacklisted IP address, or virus’ signature) will be available to all
other nodes after some time. They study the efficiency of both strategies when
this delay varies.

In all these work, immune nodes can always detect virus attack successfully.
However, with a polymorphic (such as Sality [5]) or metamorphic virus, it may
not be always possible to detect the virus correctly. In this context, several
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detectors are introduced in [3, 13, 15]. We call imperfect detection the ability to
detect a virus but not always successfully. The problem of the containment of a
virus, when nodes are provided with an imperfect detector, remains open.

Flooding and percolation This containment problem is related to proba-
bilistic broadcast (or information flooding) albeit with an opposite objective.
Sasson et al. [22] and later Hu et al. [7] both study the question and show the
relationship with the theory of percolation [2].

3 Model and Definitions

Let G = (V,E) be a connected undirected infinite graph, where V is the set of
vertices, and E the set of edges. Vertices model the nodes in the system, and
edges the bidirectional communication links between a pair of nodes. Thus, edge
eij ∈ E represents a communication link between the two nodes i, j ∈ V .

The system evolves in numbered synchronous rounds, also called timeslots.
During a round, every node can exchange messages with its direct neighbors.
Time is discrete and measured according to the round number.

A node can be in one of four states:
– infected: the node is compromised by the virus and acts as an infectious

agent.
– killed: the node no longer sends or receives any message.
– susceptible: the node is neither infected nor killed, but can still be affected

in the future.
– sane: after the spread of the virus if over and no more nodes can be infected,

the remaining susceptible nodes are said to be sane.

Initially (t = 1), all nodes are susceptible, except for a single node which is
initially infected. Then, at each timeslot, the virus can propagate via communi-
cation links, from every infected nodes to its susceptible neighbors.

Let p be a parameter of the system denoting the infection probability. At
each round, an infected node attacks and attempts to infect each of its suscep-
tible neighbors. For each attack, the susceptible node targeted is infected with
probability p. Conversely, with probability 1− p, the node detects the attack, in
which case it starts a containment strategy.

Killing strategies When a susceptible node is victim of a failed attack, it
detects the attempt and can initiate a containment strategy. This paper considers
a family of killing strategies, in which a certain number of nodes are killed to
act as an obstacle to the spread.

We consider killing strategies that differ in the extent to which neighboring
nodes are deactivated/killed. Strategy Kh-Hop is defined for any non-negative
value of h, such that the detector (i.e., the node detecting the infection attempt)
send messages to kill all nodes in its h-hops neighborhood, and then kills itself.

The behavior of a node receiving such a message depends on its current state:
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– A susceptible node sacrifices itself as requested by the message, after having
potentially relayed the message as requested by the strategy.

– An infected nodes ignores the message; it neither forward the message nor
sacrifice itself.

– A killed node neither receives nor forwards the message, and cannot be
infected.

When a node receives both a killing message and an infection message, there
is a probability α that the strategy messages take precedence over infection
messages. When α = 1 we say that killing messages have priority.

An example of virus propagation and its containment by K1-Hop strategy is
given in Appendix A.

Infinite grid The infinite grid corresponds to the graph G = (V,E) where
nodes are located on the square lattice. Each node is connected to the nodes
at distance one in each of the four cardinal directions. V = Z × Z and E =
{ei,j | i ∈ V ∧ j ∈ V ∧ dist(i, j) = 1}

4 Equivalence of Site Percolation and K0-Hop Strategy

In this section we show that site percolation and strategy K0-Hop have the same
threshold, below which propagation is contained with probability one and above
which it is not contained with non zero probability.

Site percolation Given an infinite graph and a probability p such that any
site (i.e., node) is occupied with probability p (resp., empty with probability
1−p), let us consider the random variable Xp that equals 1 if there is an infinite
connected component of occupied nodes and 0 otherwise.

There exists a threshold τ (called the percolation threshold) such that [2,14]:{
P[Xp = 1] = 0 if 0 ≤ p < τ
P[Xp = 1] = 1 if τ < p ≤ 1

In other words, with probability 1, there is an infinite connected component of
occupied nodes when the probability p is above τ . Respectively, there is no such
component when p is below the threshold. When p exactly equals the threshold,
the situation is unclear.

Strategy K0-Hop Given a probability p of infection and an infinite graph,
consider a spread against the K0-Hop containment strategy. Let Yp be a random
variable that equals 1 if the spread never stops and 0 otherwise.

For the two extreme values of p, the distribution of Yp is trivial: when p = 0,
the spread is immediately contained and P[Y0 = 1] = 0; conversely, when p =
1, all nodes are infected and P[Y1 = 1] = 1. Moreover, by a simple coupling
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argument, it is also clear that the function p 7→ P [Yp = 1] is non-decreasing.
Therefore, there exists a unique threshold τ0 such that:{

P[Yp = 1] = 0 if 0 ≤ p < τ0
P[Yp = 1] > 0 if τ0 < p ≤ 1

Of course, it is also possible that either P[Yp = 1] > 0 for all p > 0 (τ0 = 0)
or P[Yp = 1] = 0 for all p < 1 (τ0 = 1). It is important to note the inequality.
Contrary to the random variable Xp associated to site percolation, Yp does not
“jump directly from 0 to 1”. In fact, Yp equals 1 if and only if p = 1. For any
probability of infection p strictly lower than one, there is a non-zero probability
that strategy K0-Hop contains the spread. Indeed, if all neighbors of the initially
infected node detect the infection, the propagation stops immediately. This case
happens with probability (1− p)δ, where δ > 0 is the degree of the initial node,
and thus P[Yp = 1] ≤ 1− (1− p)δ.

Theorem 1. Site percolation and strategy K0 have the same thresholds: τ = τ0.

We can observe that, if the probability of infection of a node depends on the
state of its neighbors (if the events are not independent), then the result may be
different, but, with some bound on the probability of infection, we still obtain
the following corollary.
Corollary 1. Given a graph G = (V,E), and let τ be the site percolation thresh-
old on G. If, for all u ∈ V and t ∈ N, the probability pu,t that a susceptible node
u is infected at time t is bounded by τ , then the K0-Hop strategy contains the
propagation of the virus with probability one.

5 Virus Containment with Priority Killing Messages

In this section, we prove that it is always possible to contain the propagation
in an infinite grid, provided that we use a killing strategy that sacrifices enough
nodes (i.e., a strategy Kh-Hop with h large enough). The proof is done by
reduction to strategy K0-Hop so that we can apply Theorem 1 and use the
existence of a percolation threshold for a specific topology.

Theorem 2. Given a virus spread with infection probability p, where 0 ≤ p < 1,
there exists a killing strategy that contains the virus spread.

5.1 Definitions and explanations
General idea of the proof Based on the infinite grid, we define the notion of
super nodes to encompass a squared subset of nodes. Super nodes are considered
as infected, killed, or sane depending on the states of their internal nodes. By
choosing an appropriate size for the super nodes and an adequate containment
strategy, we can show that, at the super node level, the propagation of the
virus behaves similarly as when strategy K0-Hop is executed. From there, we
can deduce that the infection is contained at the super node level, which then
implies containment at the lower level.
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Super node Given a strictly positive integer h and the infinite grid G(V,E)
with V = Z × Z, we partition the nodes into super nodes of size h. Each super
node is a subset of h2 nodes organized in a square of side h. The super node at
column x and row y, denoted g(x, y), corresponds to the following subset of V :

g(x, y) = {(hx+ i, hy + j) ∈ V | 0 ≤ i, j < h}

Similarly to nodes, super nodes may be infected, killed, or susceptible. We
say a super node is infected if all nodes in at least one of its sides are infected. If
a super node is not infected, we say it is killed if it contains at least a killed node,
otherwise, we say it is susceptible (or sane if the spread is over). For simplicity,
we assume that the super node containing the initial infected node (at (0, 0)
wihtout loss of generality) is also infected.

Containment strategy Given a super nodes of size h, we study the strategy
K2h-Hop. For the analysis we consider a slightly modified version of the K2h-
Hop strategy: nodes do not send killing messages to neighbors belonging to
different super nodes. Thus, the killing strategy affects only nodes contained in
the same super node as the detector. This modification favors the propagation;
it weakens the containment strategy and helps the virus propagate and therefore
has no impact on our result. Indeed, if the spread is contained with the modified
version, it is also contained with the standard K2h-Hop strategy.

x

y

(a) at node level

x

y

(b) at super node level

Fig. 1. Example of infection

Figure 1 provides an example of infection at the nodes level and at the super
nodes level. At the super node level, it is worth noting that, unlike what happens
at node level, an infection may be transmitted in “diagonal”: in the figure, the
central super node has infected the super node located at the lower left corner.
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Since an infection can be propagated via the diagonals, the infection in super
nodes can be seen as an infection in the lattice where every node has 8 neighbors.
This lattice is called Moore’s neighborhood [16]. In this section, the neighbors
of a super node are the neighbors according to Moore’s neighborhood and the
neighbors of normal node are the four neighbors in the default model (Von
Neumann’s neighborhood).

Also, one can observe that when a node in a super node U detects an attack,
then it broadcast killing messages in the whole super node (because all the nodes
in the super node are at distance at most 2h from one another). So that if one
node is attacked, then all the other nodes in its super node are either killed or
infected. Therefore, a super node is either sane, or contains no sane node.

Small-Four Based on the previous observation, we introduce the notion of
“Small Four”. For any group of four super nodes arranged in a 2×2 grid, let us call
“Small-Four” the group of four normal nodes that connect these four super nodes
by their corners. In Figure 1a, the group of four nodes (0, 0), (0,−1), (−1, 0), (−1,−1)
located in the small black square is an example of the “Small-Four” that connects
the four super nodes g(0, 0), g(0,−1), g(−1, 0), g(−1,−1).

Rectangle In the remaining of the section, the distance d(u, v) between two
nodes u and v, denotes the length of a shortest path between u and v. For two
nodes u and v, Rect(u, v) denotes the set of nodes in the rectangle delimited by
u and v: Rect(u, v) = {w ∈ V | d(u,w) + d(w, v) = d(u, v)}.

5.2 Proof
Now, we prove several Lemmas to analyze the propagation of the infection within
a super node (and its origin), then we prove that the propagation of the virus
at the super node level is a simple virus propagation in the square lattice with
Moore’s neighborhood against the K0-Hop strategy. Finally, we conclude by a
proof of the theorem using the equivalence proved in the previous Section.

Lemma 1. Let u be a node, in a super node U , infected for the first time at
time t. Let v be a node in U , at distance dv ≥ 0 from u. Then, v is susceptible
at time t′ < t− dv, and cannot be killed at time t− dv.

Proof. First, suppose by contradiction that there exists a node v in U and at
distance dv from u that detects a failed attack at time t− dv. Then, the killing
messages sent by v reach u at time t, killing node u before it gets infected. So,
each node in U at distance d from u cannot detect an attack at time t − d or
before. Moreover, if a v is infected at time t− dv − 1, then the infection reaches
u before time t, a contradiction, so v is susceptible at time t′ < t− dv.

Lemma 2. Let u be a node, in a super node U , infected for the first time at
time t. Let v be a node in U , at distance dv ≥ 0 from u, that is infected at time
t−dv. Then, each node in Rect(u, v) and at distance d from u is infected at time
t− d.
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Proof. Let v be a node in U at distance dv from u that is at infected at time
t− dv. Let w1 be a node in the rectangle Rect(u, v) that is at distance 1 from v
(thus at distance dv − 1 from u). By Lemma 1, we know that w does not detect
an infection at time t− (dv − 1), then the infection from v is successful and w1

is infected at time t− (dv − 1). Again, if w2 is a node in Rect(u, v) at distance
2 from v then w2 has a neighbor that is infected at time t − (dv − 1) (a node
that is in Rect(u, v) and at distance 1 from v). Therefore, w2 is infected at time
t − (dv − 2). Recursively, each node in Rect(u, v) at distance d from u (and at
distance dv − d from v) is infected at time t− d.

According to the previous Lemma, we can define formally what we mean by
the origin of the infection of a node: the infection of a node u originates from a
node v (in the same super as u) if u is infected for the first time at time t and
each node in Rect(u, v) and at distance d from u is infected at time t− d.

One can observe that the origin of the infection may not be unique as we can
say the infection of u may originates from any node in the rectangle Rect(u, v).
The interesting origin of the infection (in the super node) may be the first in-
fected node with such property. Its clear that the first infected origin of the
infection is on one side of the super node, and the next lemma proves that it is
actually always a corner.

Lemma 3. The infection of any node u, in a super node U , originates from a
corner of U .

Proof. The Lemma is proved by induction on the time t of the first infection of
u. At time 0, the lemma is proved for node (0, 0) as it is in the corner itself.

Now let u be a node infected for the first time at time t and suppose the
Lemma proved for every node that is infected before time t. Let U be the super
node of u. Let v be one of the first infected node on the side of U such that the
infection of u originates from v. If v is first infected at time tv, then it is a distance
t − tv from u. Thus, all the neighbors of v in U are not infected at time tv − 1
(otherwise, such neighbor would be an origin of the infection of u in U , which
contradicts the fact that v is the first one). So that v has a neighbor outside U ,
call it w, that is infected at time tw = tv − 1. By hypothesis, the infection of w
in its super node W originates from a corner of W . For all possible corner c of
W , the rectangle Rect(w, c) contains a corner c0 of W that is also a neighbor of
a corner b0 of U (see Figure 2). Let db be the distance from u to b0 and dc be
the distance from c0 to w (which is also the distance from v to b0). See Figure 2
for an illustration of the configuration.

By Lemma 2, c0 is infected at time tw−dc. So that at time tw−dc+1 = tv−dc,
node b0 is either killed (it has detected the attack from c0) or infected.

By the triangular inequality, we have db ≤ dv+dc so that tv−dc = t−dv−dc ≤
t−db and by Lemma 1, b0 cannot be killed at time tv−dc. Therefore, the corner
b0 of U is infected at time tv − dc. Since b0 is at distance at most dv + dc from
u then, by Lemma 2, the infection of u originates from b0. By hypothesis, b0
cannot be infected before v so tv − dc = tv i.e., dc = 0, which means v = b0 and
v is in a corner of U .
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u

v w

c0 cb0

U W

d
c

Fig. 2. The infection of a node u originates from a corner of its super node.

Lemma 4. The first infected node in a “Small-Four” belongs to an infected
super node, or is the node (0, 0) and the source of the infection.

Proof. Consider a “Small-Four” composed of the following set of nodes S =
{(hx, hy), (hx − 1, hy), (hx − 1, hy − 1), (hx, hy − 1)}. Assume that u ∈ S is
the first infected node among the four nodes and belongs to the super node U .
Because the three other nodes of S are infected after node u, either u = (0, 0)
is the source of the infection or u is infected by another node inside U . In the
latter case, according to Lemma 3, the infection of node u originates from a
corner of U distinct from u (because u is infected by a node inside U). One can
observe that the infection originates from a corner that is adjacent (i.e., on the
same side of the super node) to the corner u. Indeed, if it originates from the
opposite corner, it also originates by definition from any node in the super node,
including the adjacent corners. This means that, at least one side of super node
U is entirely infected i.e., U is infected.

Lemma 5. A super node (distinct from g(0, 0)) may be infected only if it is a
direct or diagonal neighbor of a previously infected super node. Moreover, in this
situation, the probability of being infected is bounded by 4ph.

Proof. According to Lemma 3, if a super node U is infected, the attack originates
from a corner. The node u in this corner was infected by a neighbor outside U ,
thus by a node that belongs to the same “Small-Four”. By Lemma 4, the first
infected node of this “Small-Four” belongs to an infected super node, or to g(0, 0)
(which is considered infected). Hence, one neighbor (direct or diagonal) of super
node U is infected.

Let us recall that p is the probability that a normal node in the grid is in-
fected. To become infected, a super node must have one of its sides entirely
infected. For a given side, the probability that it becomes infected is exactly by
ph since any of the h nodes has a probability p of being infected. The events
corresponding to the entire infection of each side are not independent (two ad-
jacent sides have a node in common), but the probability that a super node has
at least one side entirely infected is bounded by 4ph.

In more details the probability that a super node is infected depends on the
way its neighbors are infected. Indeed, when considerging a super node U , if only
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one side of a neighbor is infected, and if this side is not connected to U then U
is not attacked by this neighbor and the probability that U is infected is 0. But,
if a unique node effectively attacks U , then the probability that U is infected is
exactly 2ph−p2h−1, which is the probability that at least one of the two sides of
U adjacent to the attacked corner gets entirely infected. Since U can be attacked
from different corner at different time, we simply bound the probability that U
is infected by 4ph.

Proof (Proof of Theorem 2). According to Lemma 5, the set of infected super
nodes forms a single connected component, with the Moore’s neighborhood (two
diagonal super nodes are considered connected).

Since every neighbor of an infected super node has a bounded probability to
be infected, the infection spreading through super nodes can be seen as strategy
K0 on an infinite lattice with Moore’s neighborhood.

According to Corollary 1, if we choose p such that the probability that a node
gets infected is smaller than the percolation threshold, then the propagation of
the virus is contained by the K0-Hop with probability one. According to Malaz
and Galam [16], there exists a percolation threshold in an infinite lattice with
Moore’s neighborhood. Let ρMoore

c be the percolation threshold in an infinite
lattice with Moore’s neighborhood.

Let h ∈ N be such that h >
log(ρMoore

c /4)
log p . The virus spreading with infection

probability p against the K2h-Hop strategy can be seen as the propagation of
virus via super nodes of size h with probability bounded by 4ph < ρMoore

c against
strategy K0-Hop. By Corollary 1 such propagation is contained, so that the virus
propagation with infection probability p is contained by strategy K2h-Hop in
an infinite grid.

6 The Case of Non-Priority Killing Message

When the killing messages do not have priority (α < 1) then the analysis of
the previous Section does not hold. In this Section we study the behavior of the
best possible strategy, which is K∞-Hop. Even though this strategy may not be
applied in practice, as all nodes in the network are killed if a virus is detected,
it has theoretical interest. Indeed, if the virus is not contained when using the
K∞-Hop strategy, then, no strategy contains the virus.

First, one can observe that, since we consider the K∞-Hop strategy, at time-
slot t ∈ N all the nodes at distance t from the origin are either infected or killed.
Those nodes form a square whose vertices are nodes (t, 0), (0, t), (−t, 0) and
(0,−t). Therefore, we can restrict our analysis on a quarter of the grid: if the
virus is contained with probability one (resp. smaller than one) on a quarter of
the grid, it is contained with probability one (resp. smaller than one) on the
whole grid. Also, we can order the nodes and say that the two predecessors of
a node are its neighbors that are closer to the origin. Figure 3 represents an
execution of K∞-Hop starting from an initial infected node at (0, 0).

We know from the previous Section that, when α = 1, K∞-Hop strategy suc-
cessfully contains the virus. However, when α = 0, it depends on the probability
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(0, 0)

Fig. 3. An execution of K∞-Hop on
the upper right quarter of an infinite
grid. Red, green, and black nodes are
resp. infected, detector, and killed.
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Simulations
Lower bound

Fig. 4. Threshold of the probability pα to con-
tain the virus, depending on the value of α. bla
bla bla bla

p. Indeed, when α = 0, a node becomes infected if at least one of its two prede-
cessors is infected. This model is exactly a directed site percolation on the square
lattice. The percolation threshold for this model is around 0.7054852 [8, 9, 26]
(computed by simulations). Thus K∞-Hop strategy contains the virus if p is
above this threshold. Now, the main result of this Section, is to give a lower
bound on the the value of the percolation threshold pα, depending on the value
of α. Figure 4 depicts the lower bound and an approximation of the threshold
that we computed by simulations.

Theorem 3. If p < min
(
1, 2

3−2α

)
, the virus is contained. In particular, the

virus is always contained if α ≥ 0.5 and p ̸= 1.

Proof. On Figure 3, the blue box encompasses the nodes that were infected/killed
at round 6. We are interested in the evolution of the nodes in the diagonal over
the time, see Figure 5. One can observe that if there are k killed nodes at one
extremity of the diagonal, then there will be also at least k killed nodes on the
same extremity of the next diagonal.

Fig. 5. The spread of the virus on the diagonal (k1 = 1 and k2 = 3)

Consider a diagonal of size d, which contains k1 killed nodes at one extremity
and k2 at the other. Let us define the central part of the diagonal as the n =
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d− k1 − k2 nodes between the two extremal blocks of killed nodes. At the next
round of the execution, the new diagonal contains d + 1 nodes and its central
part contains n− 1, n, or n+ 1 nodes.

The proof of the theorem is the result of the two following Claims, that are
true for an arbitrary constant X ∈ N:

– Claim 1: if the central part has at most 2X nodes, the probability the virus
is contained in the next round is greater than a fixed constant CX > 0.

– Claim 2: if the central part has more than 2X nodes and if p < 2
3−2α+f(X)

(with limX→∞ f(X) = 0), then eventually the central part has size at most
2X.

Indeed, if p < 2
3−2α we can choose X large enough so that p < 2

3−2α+f(X) .
Then, by the second Claim, there cannot be an infinite execution without the
condition of the first Claim being verified, so that we always have a strictly
positive probability that the virus is contained i.e., the virus is always contained.

The proof of the first Claim is straightforward as there is a probability at
least CX = (1−p)2X+1 > 0 that all nodes on the next diagonal detect the virus.

The proof of the second Claim is a by studying the expectation E of the
reduction of the size of the central part after one round, on one side of the
diagonal (since the other side has the same behavior).

The central part decreases by k nodes when the node in the extremity is
killed (not infected or receives the killing message from one of its neighbors),
k − 1 other nodes detect the attack and the next node is infected. This event
occurs with probability (1 − (1 − α)p)(1 − p)k−1p. We consider only the case
k ≤ X because we are on one side of a diagonal of length at least 2X. Then

E = (1− (1− α)p) p

X∑
k=0

k(1− p)k−1.

For p < 1,

∞∑
k=0

k(1− p)k−1 =
1

p2
, therefore E = (1− (1− α)p) p

(
1

p2
− g(X)

)
with limX→∞ g(X) = 0. The size d of the diagonal increases by 1 every round.
Since we considered only one side of the diagonal, we need to solve E > 1/2 to
determine when containment is possible, which gives the following bound:

p <
2

3− 2α+ f(X)
with lim

X→∞
f(X) = 0

7 Conclusion

We considered the virus propagation problem where nodes that detect a failed
infection attempt can broadcast a deactivation message to their neighbors to
contain the propagation. We first show that the strategy consisting in deacti-
vating itself when an attack is detected (without alerting its neighbors) has the

13



same behavior as the site percolation, in the sense that both problems have the
same critical probability threshold. Then, we prove that in an infinite grid graph
the propagation of a virus can always be contained when the killing message have
priority, for all value of 0 ≤ p < 1, by choosing an adequate strategy. Finally,
when killing messages do not have priority, we showed a lower bound on the
threshold of the infection probability, above which the virus spreads infinitely
with a positive probability.
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A K1-Hop Strategy Example

Figure 6 depicts a step-by-step execution of strategy K1-Hop in a 3×5 grid. An
infected node attacks its neighbors at timeslot t; the right neighbor detects the
attack, the left and the top ones become infected. Following strategy K1-Hop,
the right neighbor (detector) sends kill messages to its own neighbors and kills
itself; its two neighbors (top and right) react accordingly, even though the top
one is attacked at the same time. Two other nodes detect the attack at time t+1.
At time t + 2, one of the kill message reaches an infected node and is ignored.
The state of the nodes at time t+ 2 is final, and the network is partitioned i.e.,
the spread is contained.

(a) Timeslot t− 1 (b) Timeslot t (c) Timeslot t+ 1 (d) Timeslot t+2

Fig. 6. Example of the spread of a virus against the strategy K1-Hop

B Omitted Proof

Theorem 1 (restated). Site percolation and strategy K0 have the same thresh-
olds: τ = τ0.

Proof. The proof consists in showing that Yp and Zx
p follow the same distribution

for any p and any occupied node x. To prove the claim, consider the following
(intuitive) link between both models in Table 7a.

With site percolation, all nodes are randomly set to the occupied state (with
probability p) or to the empty state (with probability 1− p). With strategy K0-
Hop, some nodes are randomly set to the infected state (with probability p) or
to the killed state (with probability 1 − p) , but some other nodes are not set
in one of these states. Indeed, any node that is neither an infected node, nor a
neighbor of an infected node, remains in a sane state (see Section 3).

However, sane nodes do not have any effect on the random variable Yp since
they are disconnected from the initially infected node. The value of Yp depends
only on the infected (red nodes on Figure 7b) and killed nodes (gray nodes):
all infected nodes are connected and therefore Yp reflects the infiniteness of this
infected component.

With site percolation, for a given occupied vertex x, the same observation
applies to the random variable Zx

p . It depends only on the occupied nodes (black
nodes on Figure 7c) that are connected to x or the empty nodes (white nodes)
that are around these occupied nodes. Other nodes (light gray nodes) do not
have any effect on Zx

p ; they could be occupied or empty; it will not change the
value of Zx

p .
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strategy K0 site-percolation
infected node occupied node

killed node empty node
sane node — (no equivalent)

initial infected node any occupied node x

(a) Intuitive link between K0 and site-
percolation

(b) Strategy K0-Hop

x

(c) Site-percolation

Fig. 7. “Equivalence” between strategy K0-Hop and site-percolation model

Since (1) nodes are infected or occupied with the same probability p starting
from an initial infected node or an arbitrary occupied node x, and (2) Yp = Zx

p ,
it follows that τ = τ0.
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